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Abstract

Construction of a universal finite-type invariant can be reduced, under
suitable assumptions, to the solution of certain equations (the hexagon
and pentagon equations) in a particular graded associative algebra of
chord diagrams. An explicit, closed-form solution to these equations may,
indirectly, give information about various interesting properties of knots,
such as which knots are ribbon. However, while closed-form solutions
(as opposed to solutions which can only be approximated to successively
higher degrees) are needed for this purpose, such solutions have proven
elusive, partly as a result of the non-commutative nature of the algebra.
To make the problem more tractable, we restrict our attention to solutions
of the equations in the subalgebra of horizontal chord diagrams, viewed
as a graded unital permutative algebra — where ‘permutative’ means that
u[z,y] = 0 whenever u has degree > 1. We show that this restriction leads
in a straightforward and fairly short way to a reduction of the hexagon
and pentagon equations to a simpler equation taken over the algebra of
power series in two commuting variables. This equation had been found
and solved explicitly by Kurlin under a superficially different set of re-
duction assumptions, which we show here are in fact equivalent to ours.
This paper thus provides an alternative (simpler and shorter) derivation
of Kurlin’s equation.
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1 Introduction

The fundamental theorem of finite-type invariants assures us that a universal
finite type invariant exists which takes values in the associative algebra of chord
diagrams on the circle (modulo the 4-term relation). Construction of such an
invariant can be reduced, under suitable assumptions, to solving certain known
equations (the hexagon and pentagon equations) in the related algebra A,, of
chord diagrams on n vertical strands (modulo similar relations). Solving these
equations explicitly has proved to be extremely difficult, partly because multi-
plication in A4,, is associative but not commutative.

A universal formula for solutions to the equations has been given by Drin-
fel’d [Drin2] using integral methods. However, for applications, closed-form
solutions (as opposed to solutions which can only be approximated term-by-
term) are often needed. For instance, it is expected that finite-type invariants
can be constructed which may give information about the genus of knots, or
which knots are ribbon knots [BN5|]. But finite degree approximations are not
generally expected to suffice in this regard — in particular, Ng [Ng] has shown
that no finite degree approximation to a universal finite-type invariant can give
information about ribbon knots.

Lieberum [Lieb] has considered the pentagon and hexagon equations in a
related context in which solutions are required to belong to (tensor powers of)
the universal enveloping algebra of gl(1]1), and found a closed—form solution.
However, the difficulty of solving the equations explicitly for universal finite-type
invariants has prompted researchers to consider various simplified versions of the
problem. One approach, proposed by Drinfel’d in [Drin2], is to assume solutions
to the equations are group-like elements of the relevant associative algebra, and
to consider the image of the equations under the logarithm function. The result
is certain equations over a Lie algebra £ which has the same generators as the
associative algebra. Drinfel’d discussed the solution of these equations in the
quotient L£/[[L, L], [L, L]], without however giving explicit formulae.

Kurlin [Kur] subsequently took up Drinfel’d’s approach and achieved a sig-
nificant simplification. Specifically he showed that the logarithmic hexagon and



pentagon equations, in the given quotient of the Lie algebra £ (which he called
‘compressed’ equations), were equivalent to a single equation, this time taken
over the algebra of ordinary power series in two formal commuting variables x
and y:
M y) e Aw2) + e Aw2) = —+ ST & 1)
Ty  yz o xz

Here A is a power series in z and y (for which we are solving) and z stands for
—(z+y).

Translating equations over a Lie algebra into an equation over an ordinary
commuting power series algebra constituted an important development. Fur-
thermore Kurlin was also able to solve this equation and specify explicitly all
of the solutions.

In this paper we take an alternative approach to simplifying the hexagon and
pentagon equations, which turns out to be equivalent but is simpler and easier
to extend. Like Kurlin we restrict ourselves to the algebra of chord diagrams
in which all chords are horizontal. In the relevant case where our diagrams lie
on three vertical strands, we essentially get a power series algebra in three non- ¢
commuting variables subject to certain additional relations. Unlike Kurlin, we +
consider those equations at the associative algebra level, but over the quotient e
algebra in which: -

sl =0 Q=Ax(14) + bl
where x and y are any elements of the algebra, and u represents a product of
one or more chords (we call this the ‘one frozen foot’, or 1FF, quotient). In a
later part of the paper, we generalize somewhat to the case where w is a product
of any two or more chords (the two frozen feet, or 2FF, quotient).

We note that passing to the 1FF quotient amounts to viewing the positive
degree part of the horizontal chord diagram algebra as an algebra over the
operad ‘Perm’ — that is, an associative algebra in which which zyz = xzy for
all elements z,y and z of the algebra (see [Zinl).

We show that the hexagon and pentagon equations, modulo 1FF, again
reduce to Kurlin’s equation defined over the algebra of commuting power series
in two variables. Moreover, we show that solving Kurlin’s compressed equations
at the Lie algebra level is equivalent to solving the hexagons and pentagon at the
associative algebra level modulo 1FF. Thus in particular we get an alternative,
but simpler and shorter, derivation of Kurlin’s simplified equation (II).

We also show how to solve the hexagon and pentagon equations in the 2FF
quotient and show that all such solutions are derived, in an explicitly given way,
from solutions over 1FF.

Part 2 of the paper is organized as follows: in Section 2.1, we review various
relevant algebras of chord diagrams and their related Lie algebras. In Section
2.2, we set forth the equations we wish to solve and the assumptions we place
ab initio on the solutions. In Section 2.3 we derive some basic properties of the
chord diagram algebras and of solutions to the hexagon and pentagon equations,



based on the given assumptions. In Section 2.4 we show how the hexagon
and pentagon equations, in the 1FF quotient, reduce to Kurlin’s equation ().
We also show that the hexagon and pentagon equations hold (with group-like
solutions) modulo 1FF if and only if their logarithmic images hold (with Lie
series solutions) modulo [[£, £], [£, £]], thus establishing the equivalence of our
results with the results of Kurlin. Finally, in Section 2.5 we extend the main
result of Section 2.4 to two frozen feet. Specifically, we show how the hexagon
and pentagon equations can be solved in the 2FF quotient by a specific extension
of solutions in the 1FF quotient.

Acknowledgement. The author would like to thank Dror Bar-Natan for sug-
gesting the project which forms the subject of this paper, and for many helpful
discussions.

2 Closed-Form Associator

2.1 Algebras of Chord Diagrams
2.1.1 The Algebras A and A'FF

In this paper, we consider the algebra
A= Ahor (2)

where A" refers to the algebra of chord diagrams on n vertical strands (modulo
the 4T relation - see below), but in which we allow only horizontal chords. The
n is usually implicit, but sometimes it is indicated, as in A,,. The hat on the
RHS above means we take the formal completion. We can also define

A = A/ 1FF, (3)

where, again, 1FF stands for ‘1 Frozen Foot’, i.e. allowing all chords after the
first (counting from the bottom) to commute. In a later portion of the paper
we consider the quotient A?FF = A/ 2FF, in which all chords after the second
(counting from the bottom) commute.

All algebras in this paper are considered over the ground field Q.

2.1.2 Notation

In this paper we will mostly be concerned with the case n = 3. The resulting
algebra can be expressed in purely algebraic terms as an (almost) commutative
polynomial algebra on three letters a, b, c:

A= Q<abe> | 4T, IFF (4)

where for convenience we use the convention (followed through much of the
paper):



The 4-term relation 4T here translates to

[a+bc] = [b+ca] = [e+a,b]= 0

or equivalently

[a+ b+ c,w] =0, Yw e A
and 1FF translates to:

ury = uyx

where
u,z,y € Aand deg u > 1

2.1.3 Operations on A

There are n ‘degeneracy’ operations 7;, i € {1,...,n}, defined on A4,, (and there-
fore on An) by the fact that 7; acts on individual chord diagrams by deleting
the i-th strand (and relabeling subsequent strands) if no chord ends on the i-th
strand, and sending the diagram to zero if any chord ends on the ¢-th strand.

There are also strand doubling operations A;, where ¢ may range over the
number of strands in a diagram. A; acts by doubling the i-th strand, and
summing over the number of ways of ‘lifting’ all strands previously ending on
the i-th strand to the two new strands. For instance, viewing a as an element
of Ay in the obvious way, Aj(a) = b+ c¢. In Part 3 of the paper, we will only
allow doubling of the first (shield) strand, that is we only allow the doubling
operation Aj.

When A; acts on a diagram with just one strand, we write A. This gives rise
to the notation A; = (1®--- @ A®---® 1) where the A is in the -th position.
We sometimes write this (1...1A1...1), omitting the tensor symbols.

The symmetric group S,, acts on diagrams with n strands by permuting
the strands. If D is a diagram with n strands, we indicate the action of the
permutation which sends (12...n) to (zy...z) on D as D*¥*. For instance, we
have

2.1.4 Induced Lie Algebras

The algebras A, (and their completions) induce Lie algebras £, (and their
completions £,,) with generators the single-chord diagrams in A,,, with product
the commutator bracket: [z,y] := xy — yx, and with the Lie ideal of relations
generated by the defining relations for the A,,.



We can also form the quotient

£CC =L/ (L, L), L, L]

where the superscript ‘CC” stands for ‘commutators commute’.

2.2 Criteria for ¢

Following Drinfel'd [Drin2], we are looking for invertible R € Ay and ® € As
satisfying the following primary conditions:

e The Hexagons

Positive Hexagon:

(AL)R = &-R* . (¢~1)132. R13. 9312 (5)
Negative Hexagon:
(A)(R™Y) = @ (R™H)2 . (¢~1)132. (R~1)13. 312 (6)
e The Pentagon

P12 . (1A1)D - 23 = (A1) - (11A)D (7)

We also impose the following ancillary conditions:

e Symmetry

- P32 =1 (8)
e Non-Degeneracy
me® =mn®=n3®=0 (9)
e Group-like
® = exp(¢), for some ¢ € L3 (10)

It can be shown that (under the assumptions in this paper, and particularly
the restriction to horizontal chords, which forces R to be symmetric) any @
which satisfies the hexagons must satisfy the symmetry (or ‘unitarity’) condition
(see [Drin2] at equation (2.10) et seq., or [BN2] Prop. 3.7).

We also take R to have the form

R = exp(a) (11)

where a is viewed as an element of As.



2.3 Some Basic Manipulations in A7

We are looking for a non-commutative power series ®(a,b) which is group-like
in the sense that ®(a,b) = exp(d(a,b)), where ¢(a,b) is a Lie series in a, b, i.e.
¢(a,b) € Ls. In fact, we take the terms of ¢ to be of degree at least two, so that
the leading term of ¢(a,b) is [a,b] (up to some multiplicative factor). We will
now derive a number of simple consequences of the assumptions we have made
for A’FF ¢ and ®.

Remark 1. Lie Word Notation

The following notation will be useful: for w a word in the alphabet {a, b},
that is w = wyws ... wy, for w; € {a,b}, we write [w] for

[wy, [wa, [. .. [Wp—1,wy] .. ]]]

However we do sometimes still write the commutator of two terms as [z, y].

Lemma 1. Using the definition of a,b, c above,

(i) [ab] = [bc] = [ca]
(i) Modulo 1FF, we have

[able = [ab](—a — b)

and more generally

[ab]c™ = [ab](—a — D)™

Equivalently, in any expression which is pre-multiplied by the commutator [ab],
we can take ¢ = (—a — b) modulo 1FF.
(i11) [c"ab] = [(—a — b)"ab] in A.

Proof. (i) This follows from the centrality of a+b+c, i.e. [a,c] = [a,c—a—b—c] =
[a, —b] = [b, a] and similarly for the other equality.

(ii) This is just a simple calculation.

(iii) This is another immediate consequence of the centrality of a+b+c. O

Proposition 1. Modulo [[L, L], [L, L]] (and hence also modulo 1FF and 2FF,
as these subalgebras contain [[L, L], [L, L]]),

(i) for w a word on {a, b} of length at least two (so that [w] is a commutator),
we have [abw] = [baw];

(i) for w a word on {a,b} with n a’s and m b’s, we have [wab] = [a"b"ab];

(i11) any Lie series l(a, b, c) beginning in degree two (or higher) can be written

l(a,b,c) = [w(a,b)ab) (12)

where w(a, b) is a unique commutative power series of words on {a,b} and the
notation [wab] has been extended in the obvious way; and
(iv) for Lie series l(a,b) and l'(a,b), the following are equivalent:



l=10mod 1FF
1 =1U'mod [[£, L], [L, L]]

Proof. The Jacobi relation gives us
[abw] = —[b[w]a] — [[w]ab] = —[b[w]a] = [balw]]
The remaining assertions follow immediately. O

The following is clear from the previous proposition.

Proposition 2. Modulo 1FF, if w is a word on {a,b} withn a’s and m b’s, we
have [wab] = (—1)"*™[abla™b™.

Remark 2. Lie Algebra Decomposition and Vector Space Bases

It follows from Lemmalll and Propositions [ and [2 that:

(i) As Lie algebras, L = Qc @ L(a,b), where L(a,b) is the Lie algebra gen-
erated over Q by a,b modulo 4T.

(i) LCC = L/[|L, L), [L, L]] has vector space basis {a,b,c¢} U {[a™b™ab] :
n,m > 0}.

This remark recaptures some results from [Kur], see in particular Proposition
3.4 thereof.

We now explore the implication of the symmetry requirement (8) for the
form ® must take.

Proposition 3. Taking ®(a,b) = exp ¢(a,b) where ¢(a,b) = [w(a,b)adb] and
w(a,b) is a power series in a and b, the symmetry requirement (8) is equivalent
to w(a,b) being symmetric.

Proof. A key simplification valid in both 1FF and 2FF is the following ‘lin-
earization’ effect:

exp([w(a, b)ab]) = 1 + [w(a, b)ab] + 1/2![w(a,b)ab]* + ...
=1+ [w(a,b)ab)

As a result we will look for ® of the form:

®(a,b) =1+ [w(a,b)ad] (13)

Now ® must also satisfy the ‘symmetry’ (or ‘unitarity’) property, ®—1 =
®32L, Again using the ‘linearization’ effect valid in 1FF or 2FF we have:

®(a,b)"t =1~ [w(a,b)ab] + [w(a,b)ab]* — ...
=1—[w(a,b)ad] (14)



Note that if the strands in a chord diagram are permuted according to the
‘unitary’ transformation (123) — (321) the chords a, b, ¢ transform as follows:

a — b
b = a

c — C

So we get:

®(a,b)*" =1 + [w(b, a)ba]
=1 — [w(b, a)ad]

Comparing the expressions for ®~! and ®3?!, we see that equation () is
equivalent to w’s being symmetric. O

The following lemma further refines the form that a Lie series may take over
1FF or 2FF.

Lemma 2. Modulo 2FF, a Lie series [w(a,b)ab] where w(a,b) is an ordinary
power series in commutative variables a,b can be written:

[w(a,b)ab] = [ab]A(a,b) — a[ablO,A(a,b) — blablOpA(a, b) (15)
where A(a,b) := w(—a, —b). Modulo 1FF this reduces to:

[w(a, b)ab] = [ab]A(a,b) (16)

Proof. 1t is enough to check the case where )\ is a monomial. We have
(=1)"[a"ab] = [abla™ — alablna™ !

Indeed, the result is clear for n = 1, and for n > 1 we have:

(—=1)"[a™ab] = (=1)"[a - a"'ab]
= (-1){afabla"" — a®[ab](n — 1)a""* — [abla" "' - a
+alab](n — 1)a""? - a}

= [abla"™ — alablna™ "

This generalizes readily to

(=1)" " [a"b™ab] = [ab]a™b™ — a[ablna™ 0™ — blabla™mb™ !

and the result follows over 2FF. The reduction to 1FF is immediate. O



-
—_—

ey ‘%d%c/;

88N

:

Based on the preceding lemmas we have:

Proposition 4. Modulo 2FF, ® must take the form:

®(a,b) =1+ [ab]A(a,b) — a[ab]O.\(a,b) — blab]OpA(a, b) (17)

with A(a,b) a commutative, symmetric power series, and modulo 1FF, the form:

B(a,b) = 1+ [ab]r(@,b) = +a(b) = b 1s)

with A(a,b) a commutative, symmetric power series.

2.4 Solving the Hexagons Modulo 1FF
2.4.1 The Positive Hexagon

We will gradually work the positive hexagon into a comparatively simpler form,
which can be solved. Specifically, we will prove:

Theorem 1. Modulo 1FF, and under the assumptions (8), (9) and (1) on P,
and the assumption (I1l) on R, the positive hexagon (3) becomes:

—b a
Aa,b) 4+ e Mb,¢) + e® Na,¢) = {% + eb— + %} (19)

Remark 3. Comparison with Kurlin’s Compressed Hexagon

This equation is equivalent to the ‘compressed’ equation obtained by Kurlin
[Kur]. However, if the equation (I9) is summarized as L(A) = R, the equation
obtained by Kurlin is L(A\) = —R. The sign is due to the fact that Kurlin
writes the hexagons () and (6) with the associators on the RHS appearing in
the opposite order to ours. We have followed the convention used in [Drin] and
[BN2).

The first step in proving Theorem [l is:

Proposition 5. Modulo 1FF, and under the assumptions (8), (4) and (I0) on
®, and the assumption (I1]) on R, the positive hexagon (3) becomes:

et — ebe = [a,b]{ Ma,b) ¢ + A(b,¢) ¢ + Aa,c) } (20)
Proof. Plugging the expression (1) for R and (I8) for ® into the positive
hexagon (@) we get:

e =1+ [ BM@b)] - e - [0+ o) A(a,b))*lrw (21)

e [1tfa /\(a,b)rm

10
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Now note that if the strands in a chord diagram are permuted according to
the transformation (123) — (132) the chords a, b, ¢ transform as follows:

a — C
b > b
cC — a

Applying this to (I4) and looking modulo 1FF, we get:

(@71 =1+ [a,b] Ab )
Similarly, under the strand permutation (123) — (312) the chords trans-

form as:

a — ¢
b = a
c — b

Therefore,

®312 =1 + [a,b] Ac,a)

Accordingly, the hexagon becomes:
e’ = (14 [a,b]\(a,b)) - €’ - (14 [a,b]A(b,¢)) - € (1 + [a, b]A(c, a))

We now multiply out on the RHS. By the frozen feet property, we need keep
only the terms at most linear in [a,b]. Using also that A is symmetric, we get

ebte — ebef = [a,b]{ Ma,b) e’e® + A(b,c) ¢ + A(a,c) }

The term e’e® in the RHS becomes e*+¢, because it is pre-multiplied by [ab]
and hence the b and ¢ commute. O

We now want to find a better form for the expression e®t¢ — ePe¢. First,
though, we make a comment concerning power series. In light of the importance
of the first ‘frozen foot’ in any product, we will find it useful to split power series
in one or more variables (such as the exponential function) into summands, each
with a different ‘foot’. These feet do not commute with subsequent variables,
but the variables in the series which follow do commute among each other. Thus
for instance exp(x + y) will become

z+y) _ z+y) _
e(w_,’_y):l_'_x'e( y) 1 .e( ) 1

+
+y 4 T +y

This notation will be very convenient, but it must be remembered that, in
general, the 2 +y (or other variables) in the denominator should only be treated
as dividing (in this example) (/%) — 1) and its summands, but not the feet
x and y. More generally, in a term premultiplied by a,b or ¢, a subsequent

11



denominator should only be treated as dividing factors that follow the foot,
not the foot itself. Put more technically, the feet act as a set of generators
for a module on which the commutative ring Q[[a,a™t,b,b %, ¢,c7!]] acts by
right multiplication. By abuse of notation, we use the same letters to denote
corrresponding module and ring generators.

Further to this point, we note that the second equality in the following would
be incorrect:

_ Ty _ Y. — _
[zyl| =2y —y— =ay— ~ay=zy—ay =0
Y Y
Instead, we have the rather trivial but still very useful lemma:

Lemma 3. For z, y any two different elements of {a, b, c},

1 1 1
o y= = - 22
il ey (22)
Proof. Proof is a simple calculation. O
Using this lemma, we can derive the following proposition.
Proposition 6. Modulo 1FF, we have
bre _gb . o€ — g bl e e 1 9
c e+ ef =lab) (ab+bc+ac) (23)
Proof.
b+c 1 eb _ e — 1
bre _ebee = (14 (b+c)—") — (14 1
e de = (14 proS ) - e et
ebte — 1 e —1 et —1
=(b — —b ¢
(b+c) b+c ¢ c b ¢
1 1 1 1 1
— (c=— (b b —b=)ebte —b-)e”
(g = Cragp) + (F g —b) (g —bp)e
1 1 1
b b+cb bre e, b)—e°
bt gy e lggpe e blge

e e 1
= b —_— —_— JE—
la ]( ab * bc+ ac)
as required (note that in the last line, we have in particular used Lemma [II(i)
and (ii)). O

Putting together the last two propositions, dropping the [a, b] on both sides
and multiplying by e®, we get Theorem [

Remark 4. Singular Solution

1
Ty’
We note in passing that this is the factor which appears pre-multiplied by [z, y]
in the difference :v% — y% (see Lemma [3)). Non-singular solutions are discussed

below.

The simplified equation in Theorem [[lhas the singular solution A(z,y) =

12



2.4.2 The Negative Hexagon

It will be recalled that the associator is in fact required to solve two hexagon
equations, the positive and negative hexagons. The positive hexagon was set
out above and simplified. As mentioned earlier, it can be shown (see [Drin| at
equation (2.10) and [BN2] Prop. 3.7) that any solution of the positive hexagon
automatically satisfies the negative hexagon, provided it is symmetric - in our
notation, this means ® - ®32! = 1, or A(a,b) = A(b,a) (which we have assumed
of our @ and \). In principle therefore, we need not concern ourselves further
with the negative hexagon. However, it will be useful at various points in the
remainder of this paper to have a statement of the negative hexagon as simplified
modulo 1FF, and so we set it out here. The original version is:

(Al)R71 ) (Rfl)QB ((1)71)132 (R71)13 (1)312 (24)

In terms of a, b, ¢ this means:
132
e~ (o) — [1+[a,b]x(a,b)} Ceh. [(1+[a,b] A(a,b))—l] Cemt (25)
312
[1+ [a, b] )\(a,b)}

This in turn simplifies to:

1
)\(a’7 b) + eb )\(b, C) + 670' )\(a, c) = — 4+ —

ab  be ac

(26)

by the same method as the positive hexagon.

2.4.3 Solution to the Hexagons

Subject to the same constraints (symmetry, non-degeneracy and group-like form
for ®, and exponential form for R), Kurlin [Kur] considered the image of the
hexagon and pentagon equations (in a slightly different form) under the map
Log : GA — L, where GA refers to the group-like elements of A and Log
is given by the usual power series. Kurlin considered the resulting equations
modulo the Lie ideal [[£, L], [L£, L]] (calling these equations the ‘compressed’
hexagons and pentagon). Kurlin found that the compressed hexagons were
equivalent to (I9) and (26) (up to a change of sign due to different conventions
— see Remark B)), and proceeded to derive a full set of solutions.

Theorem [ below shows that solving the compressed equations (i.e. Log
of the hexagons and pentagon, mod [[£, L], [£, £]]) is equivalent to solving the
hexagons and pentagon modulo 1FF. Thus Theorem [I and the corresponding
derivation of ([20) provide an alternative proof that the compressed hexagons

are equivalent to (I9) and (24]).
I note, out of interest, one of the solutions found by Kurlin:

sinh(a + b) w
(a+b)  sinhw _1) fa-b (27)

w=(1"7*44 *él) "~

Ma,b) = (

13

e s
LA A



where w = (a2 + ab + b?)/2.
Before stating and proving Theorem 2] we need a few lemmas.

Lemma 4. Let o+ A be a Lie series in ﬁ, with a the linear part (i.e. of degree
one). Then, modulo 1FF:

e —1

«

et = 4 A

Proof. We consider the degree n part of e*t4:

1 1
E(a—kA)” = E(a” +A-a" ) mod 1FF

Hence
Pt =14+ (a+A)+-+1/nl@" +A-a" ) +...

1 1

=e*+A{l+a+ -+ —a"" " +...
2 n!

“—1
=e*+ A °
as required. O

Proposition 7. Let x + X, y+ Y be Lie series in L with z and y the linear
parts. Then the equality of group-like elements

em—i—X _ ey-i—Y

holds modulo 1FF if and only if the equality of their logarithmic images

r+X=y+Y
holds modulo [[L, L], L, L]].

Proof. We have

em+X _ eerY

if and only if
142+ X +ho.=14+y+Y +h.o.

(where ‘h.0.” means ‘higher order terms’) and hence, by looking at degree one
terms, we must have z = y.
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Then

X = ™Y mod 1FF

<
e””—i—Xemx_l —erryvE Tl ed1FF
<
X=Y modlFF
s

X=Y mod L, L],[L, L]

as required. Note that in going from the second to the third line, we used the
summation

e’ —1 1 1,
which shows that 61;1 is invertible, and in going from the third to the fourth
lines, we used Proposition [11 O

Theorem 2. The hexagons and the pentagon hold modulo 1FF if and only if
their logarithmic images hold modulo [[L, L], [L, L]].

Proof. The LHS and RHS of the hexagons and pentagon are (products of)
group-like elements, hence are themselves group-like elements. We can now
apply Proposition [ O

Remark 5. Campbell-Hausdorff-Baker Formula, Modulo 1FF or [[L, L], [L, L]]

Lemma [4] can be used to give a short, simple derivation of Kurlin’s formula
for the Campbell-Hausdorff-Baker formula modulo [[£, £], [£, £]] (see [Kuz] at
Prop. 2.8 and Prop. 2.12), which also holds modulo 1FF. Indeed, we seek a
power series C(z,y) in commutative variables z,y such that

exp(b + ¢+ [bc]C(b, ¢)) = exp(c) exp(b)
But from Lemma [ we have
elbte) —
(b+¢)
(where technically we should perhaps have converted [bc]C(b, ¢) to the Lie series

[C(—b, —c)bc] using Proposition 2 before applying Lemmald] and then converted
back to [bc]C(b,c)). But then

e(b+c+[bc]C(b,c)) — e(b-i-c) + [bC]C(b, C)

(b+c) _
[bc]C (b, ¢) ﬁ — el _ p(bto)
—a b 1
:—[ac](e +e_+_)

ac bec  ab

15



from Proposition [6 (after the exchange b > ¢). From this we readily derive:

et —1 b+c b
be (eb+c—1 B eb—l)
This result is valid modulo /FF and, pursuant to Proposition [, modulo
£, £, £, L]].

C(b,c) =

2.4.4 Solving the Pentagon Modulo 1FF

It so happens that the pentagon is automatically satisfied modulo 1FF, for
any function ¥ of the form ¥ = [ab] u(a,b), where p is a commutative power
series of two variables which is symmetric in its arguments. In particular, the
1FF associator ® satisfies the pentagon since it has the required symmetry
property (and this, independent of the particular form ® must take to solve
the hexagons). Since the proof already appears in [Kur] Proposition 5.10, in
this section we merely present notation, and state and prove results in the form
that will be used in the balance of this paper. This material largely reproduces
results by Kurlin but the results and proofs are given here in a somewhat more
general and concise form.

We will find expressions for (A11)¥, (1A1)¥ and (11A)¥ as sums of terms
of the form [z, y]A(u,v), where z, y, u, v are all single-chord diagrams on four
strands. In fact, each of (A11)¥, (1A1)¥ and (11A)¥ will be a sum of 4 terms
of that form. Then, as shown by Kurlin [Kur] in his Proposition 5.10, it can be
seen that cancellations occur in the (linearized) pentagon, leading to the desired
equality.

Since the pentagon lives in the space of chord diagrams on four strands, we
need to make precise what this space is. Thus we will will be concerned with
the space A4 (or rather its completion A4) generated by single horizontal chord
diagrams on 4 vertical strands, ie

a:=t2 b=, c:=¢3 (28)
d:=1t* e:= f= 14

where t* represents the chord diagram with a single horizontal chord resting on
strands ¢ and j. Obviously, t7 = 7%,

For each I = 1,...,4, we get the expected 4T relations among the chord
diagrams whose endpoints rest on the three strands other than strand [, ie

[tij,tjk] _ [tjk,tki] _ [tki,tij] (29)
where [ ¢ {i, j, k}.

These are just the 47 relations we would get if we dropped all chord diagrams
with chords resting on strand [, and viewed the remaining chord diagrams as
forming a copy of As. In addition, however, we have a new kind of relation,
known as ‘locality in space’ relations, which provide that we can commute any
two chords whose four endpoints rest on four different strands. In other words,
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[t t"] =0, whenever #{i,j, k,1} =4 (30)

We will use the notation AFF to refer to A, modulo 1FF. Of course, 1FF
in this context refers to the relations

ulryl =0  for u,x,y € Ay, deg(u) > 1
One can easily check that the element a+b+c+d+e+ f = Zl<i<j<4 £ is

central in Ay4. Since a + b+ ¢ is central in the algebra As generated by {a, b, c},
it follows also that

[d+e+ f,[ab]] =0 (31)

and hence

[ab]f = [ab](—e —d)

modulo 1FF.

We will now also take £ to be the Lie algebra generated by the symbols
{t19}1<i<j<4, with the commutation relations given by 47" and the locality re-
lations. In fact we really deal with the completion ﬁ, but will still write L.
Moreover, we take L€ to refer to (the completed) £ modulo [[£, L], [£, £]].

Finally we introduce the notation:

o tii =t if {i,j,k} = {1,2,3}
o 1T =14 fic{1,23}

Thus, ‘barring’ a chord amounts to replacing it with its ‘complementary’ chord
(ie, resting on complementary strands), with which it commutes, if the chord
does not sit on strand 4 (ie, @ = e, b = f, ¢ = d). Barring a chord that sits on
strand 4 has no effect (ie d =d, e =e, f = f).

We will also use a short-hand notation for commutators: if I € {1,2,3,4},
and (4,7, k) = (1,..., I, ., 4), we write:

0= 67,6
ie we identify a (degree two) commutator by the strand it does not touch, with
sign given by the stated assumption on the order of i, j, k.

We now derive some basic results about the Lie algebra £9¢. We first give
a set of vector space generators of £LC (compare [Kur] Lemma 5.5).

£CC

Proposition 8. 18 generated as a vector space by the elements:

1. [(#9) (%) 1)), where (i,5,k) = (1,...,1,...,4), and r,s € N. These just
generate the Lie subalgebras obtained by dropping strand I, and viewing
diagrams on the remaining strands as constituting a copy of L3; and

2. [(t#)r (745 [4]], where {i,j} C {1,...,1,...,4}, and r,s € N.

17



To prove Proposition B, we need three lemmas, starting with this lemma
which applies in £4 (compare [Kur] Claim 5.2(c)):

Lemma 5. In L4 we have

[t7[8]) = (=1)°[f"5[4]], s distinct elements of {1,2,3,4}

Proof. We let i € {1,2,3}, and then choose j, k so that (ijk) is a cyclic permu-
tation of (123). Thus [tY/%] = [4].

We note that, by 4T, [t /%] = [t7¥t¥']. Hence, [t*"t"717*] can also be written
[t4t7F R and:

[t4itijtjk] _ _[tijtjktzli] _ [tjktzlitij] _ _[tjkt4itij]
[t4itjktki] _ _[tjktkitzli] _ [tkit4itjk] _ _[tjktkit4i]

where the first equality in each line is the Jacobi relation, and the second equality
comes from the locality in space relations.

From the assumptions on 4, j, k, we see that (4,4, 7) is some permutation of
(1,.., I%, ...4), and one can readily confirm that the permutation is in fact cyclic
iff k is odd. Hence we get:

[FFR) = (~1)FE ) = (—1)* R (32)

By similar reasoning one can see that:

[F7* ] = (=17 [t = (-1 [ )] (33)

Next we can repeat the process to get:

[t4i[tijtjk]] _ _[tjkt4itij] _ —[tjktj4t4i] _ [tj4t4itjk] + [t4itjktj4] _ [t4itjktj4]

Here, for the first equality we used the 4T relations to get [t41t¥] = [t/4¢%!], for
the second equality we used Jacobi, and for the third we used the locality in
space relations.

We now note that [t7¥¢%] = (=1)"[s], where n = +1 (or —1) when (k, j,4)
is (or is not) a cyclic permutation of (1, ..., ...4). Moreover, (k,j,4) is a cyclic
permutation of (1,...,%, ...,4) if and only if 7 is even. Hence:

PG = (—1) e = (1)

When s # 4, Equation ([B2) gives us the desired result in the case r = j <

k = s, Equation B3] in the case s = j < k = r, and the last equation in the
case r = 4 # s. The case s = 4 is trivial.

O
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We now move to our various quotient spaces. We first note the remark (see
also [Kur] Lemma 5.4(a)):

Remark 6. By an obvious generalization of the proof of Proposition [, if w is
a word on {a,b,c,d, e, f} with at least two letters, and u,v € {a,b,c,d,e, f}, we
have

[uvw] = [vuw] mod [[L, L], [L, L]]
[wjuv = [wjvu  mod 1FF or 2FF

In £EC we get the result (compare [Kur] Lemma 5.4(b)):
Lemma 6. In LYY, if w is a commutative power series in the t', 1 <1i < j < 4,
and k =1,2,3, we have

[w t**[4]] = @ t**[4]
ie the presence of the factor t** multiplying the commutator [ZL] allows us to
replace all t¥9s by 7 s.

Proof. 1t suffices to show this for monomials of the given form, and also we may
assume {4, j,k} = {1,2,3} since the result is trivial when i or j is equal to 4.
We first consider the case [t%¢%7[4]]:

[tV )] = (=17 eV ] = (~17 [ )] = A = [ [4])

(where the third equality uses Lemma convertktod) as needed, for this case.
Next we take the case [t"#**[4]]. We note that [t"/[4]] = [(—t/* — t*")[4]] by
4T, so:

[ ] = (1449 A]) = [ (% — )]
— [ (=t — ) [A]] = [R5 [d)
where in the second last equality we applied the first case twice, and in the last

equality we applied Equation (3I]). This completes the proof. O

We now give a lemma, valid in £°¢, which in particular will allow us to

derive explicit expressions for the action of strand doubling in L€ (see [Kur]
Claim 5.7):

Lemma 7. Wetakel € {1,2,3,4}, and (i, 4, k) a cyclic permutation of (1, ..., I, ..., 4)
(so that [tV t7%] = [I]). We also take u € {i,j, k} and m a non-negative integer.
Then, in LEC,

[+ ¢y (1] = (@)™ 0] = (=D [EF)™ ] + (= 1) (5 + ey (4]
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Proof.

[(#9 + ey (0] = [ 0]+ > <

r=1

=[] + (-1)"

@)y (e )

xf)meW[m

= e+ -0 Y ()
= (0] - (~1)[ETY" ) + (1) [ + ) (1]

as required (where in going from the first to second lines we used Lemma [5]
and in going from the second to third lines Lemma [6] applies to ¢/ since, in the
summation, t“ appears with the power r > 1).

3
~—

r

Ms

T

&MS

H~

O

Proof of Proposition[8. The proof of Proposition B is now a straightforward
combination of the past three lemmas. O

We can now derive explicit expressions for the action of Al1l, 11A and 1Al
on U(t12 23) = [#12¢23)\(¢12, %) ([Kur] Lemma 5.8).

Proposition 9. Mod [[L, L], L, L]], we have:

(AT = A2, 292)] + A2, Y]] = M 2 [A] + M, 2 [4])
(11A)W = A2, 29 [B]] + 2, 2 [A]] = ME £ [AN] + e, 24 [4])
(LAY = A2, 29[B]] + E?, Y21 + ME 29 [A]] = e, 24 (4]

(All)[(t12)k(t23) [4]] — [(t13 4 t23)k(t34)l[t13 4 t23 t34]]
= (812 + #2353 [2)) + [(112 4+ £22)F () [ 1]
= [(2)" (@ 12)] — [ ] + [ + 149" 4]
2 1

( |- (
) ED A+ [EDPED A - [+ ) )]
= [(#12)P () 120) + [(#22) P @) ) — (2" )" [4])

+ ()]

where we used Lemma [7]in going from the second to the third lines.
The proof of the relation for (11A) and (1A1) is similar (though involving
iterated use of Lemma[7] in the case of (1A1)). O

We note finally that, while the results of this section have been stated in
terms of the Lie algebras £ and £9¢, by means of Proposition [ these results
have immediate analogues in the language of A and AFF.
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2.5 Solving the Positive Hexagon Modulo 2FF
2.5.1 Overview

We follow the same general strategy for reworking the positive hexagon into a
usable form modulo 2FF as we used modulo 1FF. However, the details are more
involved, and so an overview of the specifics may be useful.

We are taking ® to be of the form

®(a,b) =1+ [ab]\(a,b) — a[ablO,\(a, b) — blab]OpA(a, b) (34)

where A(a,b) is a symmetric power series in the commutative variables a and b
(see equation ().

We plug this expression into the positive hexagon, and rework it into the
form

b+c b

e’T¢ —e’e® = {expression in A and its partials}

where we refer to the LHS as the ‘triangle’. We find that the RHS is a sum of
terms premultiplied by [ab], blab] and c[ab].

We then find an expression for the triangle which, as it happens, consists
also of a sum of terms premultiplied by [ab], blab] and c[ab].

Comparing the [ab] terms on the LHS and RHS, we find an equation in A
only (no partials) which is just the 1FF positive hexagon. We then compare the
blab] terms on the LHS and RHS, and find that the result is just the operator
(1 + 04 — Op) applied to the 1FF positive hexagon. Similarly we find that the
clab] terms simply give us the operator (14 9, — d.) applied to the 1FF positive
hexagon. Not surprisingly, it is again true that any A which satisfies the positive
hexagon also automatically satisfies the negative hexagon.

We conclude that equation (34)) gives a solution to the 2FF hexagon whenever
A is a solution to the 1FF hexagon. Moreover, since by factoring out 2FF we
get a quotient of Kurlin’s quotient, Kurlin’s argument still applies to show that
the unitarity condition implies that such a solution is also a solution to the
pentagon.

2.5.2 Simplifying the Positive Hexagon
We go back to the equation ([B4) giving ® in the form:

®(a,b) =1+ [ab]\(a,b) — alablO,\(a, b) — blab]OpA(a, b)

with A(a,b) a commutative, symmetric power series. Note that this expression
involves only the two variables a and b, but not ¢. However, the positive hexagon
also involves expressions in (®71)132 and ®3'2, and after the corresponding
permutations are given effect, the resulting expressions will involve a, b and c.
We would like to get rid of one of these variables, for instance by replacing ¢ by
—a—>b. Lemma/Jl tells us we can go this whenever ¢ appears after a commutator,
providing we are proceeding modulo 1FF. However this is no longer true modulo
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2FF. Instead, we have the following lemma which is valid in A, not just in a
quotient:

Lemma 8. Given any power series a(a,b,c) € As,

[a,b] a(a,b,c) = [ab] a(a,b,—a —b) + (a + b+ ¢)[ad] d.a(a,b,c) (35)
where the partial is evaluated at ¢ = —a — b.

Proof. Using the fact that a + b + ¢ is central, we have
(a + b+ c)[ab] = [ab](a + b+ ¢)

hence
[ablc = [ab](—a — b) 4+ (a + b + c)[abd]

hence
[ab]c? = [ab](—a — b)* 4+ 2(a + b+ ¢)[ab](—a — b)

and more generally
[ab]c™ = [ab](—a — b)" +n(a + b+ c)[ab](—a — b)"*
and indeed
[a,b] a(a,b,c) = [ab] a(a,b,—a —b) + (a + b+ ¢)[ab] O.a(a,b,c) (36)
where the partial is evaluated at ¢ = —a — 0. o

Note that in practice we will actually use this lemma to replace a by —b — ¢,
as we will later find it more convenient to work with b and c.
Hence we will actually take ® to have the form:

®(a,b) =1+ [ab]A(=b — ¢, b) — b[ab](IyA(z,y) — OxA(z,y)) — c[ab]OzA(x, y)

where the partials are evaluated at (x,y) = (=b — ¢, b). In practice, though, we
will write this as

®(a,b) =1+ [ab]\(a,b) — blab](OpA(a,b) — OgA(a, b)) — c[ablOy\(a,b)

remembering that in fact a = —b — ¢ in expressions premultiplied by a commu-
tator.

We now need to find expressions for (#71)132 and ®3!2. We already have an
expression for ®~! namely equation (I4). Replacing w by A and its partials,
this becomes:

®(a,b)" =1 — [ab]A(a,b) + a[ab]O.\(a, b) + b[ab]OpA(a, b)

Also, as indicated earlier, under the permutation (123) — (132), chords get
permuted as follows:
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a— C
b—b
cC—a

Hence

(@132 =1 — [eb]A(c, b) + c[cb]D.A(c, b) + b[cb]OpA(b, c)
=1+ [ab]A(b, c) — b[ab]OpA(b, ¢) — c[ablO:A(c, b)

where we have used the symmetry of A and the relation —[cb] = [ab].
Under the permutation (123) — (312), the chords are permuted as

a — C
b—a
c—b

Hence

P32 = 1 + [ab]\(c, a) — c[ab)O:A(c, a) — a[abldu\(a, )
= 1+ [ab]A(c, a) + blab)d. A (a, ¢) — c[ab](DA(c, a) — DuA(a, c))
where we have used the relation [ca] = [ab].
We can now write the positive hexagon equation modulo 2FF:

"¢ =(1 + [ab]A(a, b) — b[ab](DA(a, b) — BaX(a, b)) + c[abldaA(a, b)) - €”
- (14 [ab]A(c, b) — blablOpA(b, ¢) — clabld.A(c,b))-
e (1+ [ab]A(c, a) + b[abl0aA(a, c) — c[ab](DcA(c, a) — BaA(a, c)))

Linearization still holds in 2FF, so we need to keep only terms that are up
to linear in [ab], and we get

ePte — ePe® = [ab]A(a, b)ebTC + ellab]A(b, c)e® + e’e[ab]\(c, a) (37)

— blab](Op\(b, @) — Du(a, b))’ — ®blablOyA(b, c)e®

+ e%eblabldaAa, ) + c[abl@uA(a, b)e®T¢ — ebelabld.A(c, b)el

— ebelclab](9.M(¢c, a) — Bu(a, )

= [ab]{\(a, b)e’T¢ + A(b,c)e + A(c,a) } (38)

+ blab]{M(b, ¢)e® + A(c, a) — (OpA(b, a) — uA(a,b))e"te

— ObA(b, 0)e® + Do M\(a, ) }
+ clab]{\(c, a) + DaA(a, b)e" ™ — O \(c, b)e® — DcA(c, a) + DaA(a,c)}
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where, again, we have throughout a = —b — ¢ whenever a is pre-multiplied by
[ab].

2.5.3 Simplifying the Triangle Relation

As with the 1FF case, we need to determine e?t¢ — ebe®, this time modulo

2FF. The procedure is analogous to the 1FF case. First we note the following
expression for the exponential function, which is useful modulo 2FF:

xT
g ef—x—1

ef=14+z+x 5
x
We will prove the following proposition concerning the difference e?*¢ — ebe®:
Proposition 10. Modulo 2FF, the triangle difference can be expressed:
b+c c 1
bte _ obot — [0 b (‘5 e _) 39
c ere’ =la.b] ab+bc+ac (39)
b+c b+c c c
e e e e 1 1
e R
+ bla, ] a?c b2c + b%2c  bc  ac a?c
L b]( eb+c+ec+1 L1
cla —_—t =+ — — — + —
’ a?b  bc?2  ac  bc?2  a?b

1 1 1 i)
ab  a?b  bc bc?

The proof relies on a lemma which is the equally trivial, but equally useful
2FF analogue of Lemma

Lemma 9. For z and y any two different elements of {a, b, c}, we have the
following modulo 2FF':

1
Ty?

1 1 1 1
2 2 _
2 VT [zy] = z[xy] i ylzy]

There are a couple of variants of this equation which will also be useful:

51 1 1
22~ — ay— = afoy] —
T ) LY
1 1 1 1
(@4 y)*—— + 2y~ + P~ = wlya] ——— + ylya] ———
Tty y Ty (z+y)y (z+y)y
Proof. The proofs are straightforward if tedious and are omitted. O

Proof of Proposition [I01. We plug our expression for the exponential function
mod 2FF into the triangle e®+¢ — ebe¢ and get:
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b+c _ b -1
eb+c—ebecz(1+(b+c)+(b—|—c)2e (b+<) )

(b+c)?
b c
e —b—1 ,ef—c—1
—(1+b+b T)—(l—i—c—i—c T)
b+c b
B g et —(b+e)—1 ,e"—=b—-1
=(b+c) b+ —b Te
c_1 cC_c—1
—b—bce —1—c—c2%
c
b+c b+c
b 9 € _er
b+o Groe b2
o €° o €°
+b b—2—C C_2
bC C
L
c
1
— (b 2 be= 2
(b+e) b c+ Cc—i_C c
1 1
— (b 2 - 2
(b+c) (b—l—c)Q—’—cc2

From here we use various substitutions from the previous lemma. The result
then follows from a few additional simple manipulations, which are omitted. O

2.5.4 Solution Modulo 2FF

We can now bring together the different components of the hexagon, namely
the expression for e*+¢ — e?e® and the expression involving the \’s (see equation
BT). We get terms that are pre-multiplied by [ab], b[ab] and c[ab]:

Terms in [ad]

e 2 = Aa, b)et + (e, b)ef + A(c, a)
ab bc ac_ CL, € C7 e C,CL

e

Note that this is just the (positive) hexagon equation in 1FF. In the following
we will refer to the LHS as Hex! and to the RHS as Hez".

Terms in blab] We have:

b+c b+c

e’ e’ 1 1

- _ _ . - ——— =9, b btc _ b bic
ac b2c + b2e + be + ac aZc 0 )\(a, )e 85/\(0,, )e
A D)e’ = BAD, c)e” + Ae,a) + daA(a, )

€ €

I now claim that this b[ab] equation is simply the statement
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[1 + 0, — (%]Hc%l = [1 + Oy — Bb}He:vT
and hence follows from the hexagon. On the RHS, this is easy to check:

[1+ 8, — 0| Hex" =X(a, b)ebTe 4+ Ae, b)e + A(c, a) (40)
+ (Oa(a, b))’ ¢ + 9\ (a, ¢)
— (O (a,0))e?T¢ — A(a, b)e"¢ — (IpA(c, b))el
= DM\, b)e’¢ — (A (a, b))e’C 4+ A(c, b)e® — (A(b, ¢))ec
+ Ae,a) + 0a\(a, ¢)

as required.
Checking the LHS is even simpler. We have

b+c c
e e 1
Hex! =

ab bec  ac
Hence
b+c eC 1
1+0,—0y|H [ — + —
[ + b} “ ab bc  ac
ebte 1
o e

ebJrc ebJrc c

e
ab? + ab b2

- (= )

After a small manipulation involving the e®*¢ terms and some simplification
we get the desired result.

Terms in c[ab] Here we have:

ebte ee 0101 1 1 1 1 1

a2 b T ac b2 a®  ab  a?b be  be?
= Ou\(a,0)e" ¢ — DA (e, b)ef + D\ (c, a) + Mc, a) — D\ (a, c)

As with the b[ab] terms, I claim that the c[ab] equation is simply the state-
ment

[1+8a —Bc]Hexl = [1+8a —Bc]He:CT

so that it, too, follows from the hexagon. The calculation is similar to the blab]
case and will not be repeated.
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The 2FF Solution We have shown that the solution (7)) takes the form

®(a,b) =1+ [ab]\(a,b) — a[ab]O,\(a, b) — blab]OpA(a, b) (41)

where A is a solution of the 1FF equation.

Although this is technically only a solution to the positive hexagon, it is not
hard to show that in fact the unitarity condition () suffices to insure that the
same solution also satisfies the negative hexagon (of course this also follows on
general principles from arguments given in [BN2], alluded to earlier). Moreover,
since in 2FF all commutators of commutators are zero, Kurlin’s argument (see
[Kur], Proposition 5.10) still applies to show that this unitarity condition also
insures that the solution satisfies the pentagon equation.

Thus each solution A to the 1FF equation gives rise to a solution to the 2FF
equation according to formula (4I]).

Remark 7. Singular Solution

As with the 1FF equation, one can verify that there is also a singular solution
Ma,y) = 75
Y

3 Concluding Remarks

There are a number of directions in which the work of this paper could be
extended or applied. An obvious possible extension is to attempt to extend the
results of the 1FF and 2FF quotients to ‘nFF’ quotients, with n € N.

More broadly, one could consider which other quotients might afford a closed-
form solution. For instance, there is a standard way to associate to any finite-
type invariant of knots, such as the coefficients of the Alexander polynomial, a
‘weight system’, ie a linear functional from the space of chord diagrams on the
circle modulo the 4T relation to Q (see [BN1]). The kernel of the Alexander
polynomial, or of any other finite type invariant, consists of those chord diagrams
on which the weight system corresponding to the Alexander polynomial or other
invariant vanishes. One could therefore consider whether the corresponding
quotient also allows a closed—form formula for the associator.

In a different direction, one can consider quotients which are well-behaved
under a suitable class of operations on knots, or knot-like objects. This is related
to the ‘algebraic knot theory’ program initiated by Bar-Natan [BN5|, which con-
siders invariants of knot-like objects which transform ‘functorially’ with respect
to certain operations between such objects. The operations considered include
the well-known strand-doubling and connected sum operations, but also strand
deletion and ‘unzip’ operations. A broad class of knot properties can be char-
acterized using these operations, including knot genus, unknotting number and
the property of being ribbon. This being the case, invariants which are well-
behaved under these operations may shed further light on these properties by
allowing one to transform questions about knots into questions which are set in
the target space of the invariant, which is presumably simpler and algebraically
more tractable.
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As noted earlier, research by Ng [Ng] has shown in particular that informa-
tion about ribbon knots cannot be obtained only from a finite approximation
to a knot invariant, so that closed—form solutions will be needed. Here again,
though, one is faced with the fact that determination of closed-form formulas is
extremely difficult, and so consideration of suitable quotient space is desirable.
This leads one to consider quotients which are well-behaved under the allowed
operations. To give a hint of the type of quotients this implies, we note that
one can pictorially represent the bracket of a Lie algebra as a trivalent graph:

Y

where the three edges represent two inputs and one output. Then, for instance,
the quotient explored by Kurlin, namely £/ [[£, L], [£, L]], is the quotient in
which the following diagram, and diagrams containing this diagram, are set to
Zero:

It turns out that ‘internal’ properties of a diagram are generally well-behaved
under the relevant operations. For instance, one could consider the quotient in
which the following diagram, and all diagrams containing this diagram, are set
to zero:

The key property of such diagrams for present purposes is that they contain
an internal vertex, ie a vertex whose edges lead only to other (trivalent) vertices,
and not to endpoints of the diagram. The property of having such internal
vertices is well-behaved under the algebraic knot theory operations, and hence
leads to a quotient whose exploration would be worthwhile from the algebraic
knot theory viewpoint.

References

[BN1] Bar-Natan, D.: ‘On the Vassiliev Knot Invariants’, Topology (Vol. 34:2),
pp. 423-72 (1995).

[BN2] Bar-Natan, D.: ‘Non-Associative Tangles’;, AMS/IP Studies in Advanced
Mathematics (Vol.2:1), pp. 139-83 (1997).

28



[BN3] Bar-Natan, D.: ‘Knot invariants, associators and a strange breed
of planar algebras,” talk at the Fields Institute, January 11th, 2001,
http://katlas.math.toronto.edu/~drorbn/Talks/Fields-010111/.

[BN4] Bar-Natan, D.: ‘Algebraic  Structures on  Knotted Ob-
jects and Universal Finite Type Invariants,” web publication:
http://katlas.math.toronto.edu/~drorbn/papers/AlgebraicStructures

[BN5] Bar-Natan, D. ‘Research Proposal on
Knot Theory and Algebra,’ web publication:
http://katlas.math.toronto.edu/~drorbn/Profile/ResearchProposal-07.pdf

[Drin] Drinfel’d, V.G.: ‘On Quasi-Hopf Algebras’, Leningrad Math. J. (Vol. 1),
pp. 1419-57 (1990).

[Drin2] Drinfel'd, V.G.: ‘On Quasi-Triangular Quasi-Hopf Algebras and a
Group Closely Connected With Gal(Q/Q)’, Leningrad Math. J. (Vol. 2),
pp- 829-60 (1991).

[Kur] Kurlin, V.: ‘Explicit Description of Compressed Logarithms of all Drin-
fel’d Associators’, Journal of Algebra (Vol. 292, no. 1), pp. 184-242 (2005);
arXiv:math.GT/0408398.

[Lieb] Lieberum, J.: ‘The  Drinfel’d  Associator  of  gl(1]1)’,
arXiv:math.QA/0204346.

[Ng] Ng, K.Y.: ‘Groups of Ribbon Knots,” Topology 37 (1998) 441-58,
arXiv:q-alg /9502017 (addendum at [arXiv:math.GT/0310074).

[Thu] Thurston, Dylan P.: ‘The algebra of knotted trivalent graphs and
Turaev’s shadow world,” Geom. Topol. Monogr. 4 (2002) 337-362;
math.GT/0311458.

[Zin] Zinbiel, G.W.: ‘Encyclopedia of Types of Algebras 2010’, larXiv:1101.0267
(math.RA).

29


http://katlas.math.toronto.edu/~drorbn/Talks/Fields-010111/
http://katlas.math.toronto.edu/~drorbn/papers/AlgebraicStructures
http://katlas.math.toronto.edu/~drorbn/Profile/ResearchProposal-07.pdf
http://arxiv.org/abs/math/0408398
http://arxiv.org/abs/math/0204346
http://arxiv.org/abs/q-alg/9502017
http://arxiv.org/abs/math/0310074
http://arxiv.org/abs/math/0311458
http://arxiv.org/abs/1101.0267

	1 Introduction
	2 Closed-Form Associator
	2.1 Algebras of Chord Diagrams
	2.1.1 The Algebras  and A1 F F
	2.1.2 Notation
	2.1.3 Operations on 
	2.1.4 Induced Lie Algebras

	2.2 Criteria for 
	2.3 Some Basic Manipulations in A1 F F
	2.4 Solving the Hexagons Modulo 1FF
	2.4.1 The Positive Hexagon
	2.4.2 The Negative Hexagon
	2.4.3 Solution to the Hexagons
	2.4.4 Solving the Pentagon Modulo 1FF

	2.5 Solving the Positive Hexagon Modulo 2FF
	2.5.1 Overview
	2.5.2 Simplifying the Positive Hexagon
	2.5.3 Simplifying the Triangle Relation
	2.5.4 Solution Modulo 2FF


	3 Concluding Remarks

